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Why not SQL and Rest API?

sQL

Databases - Designed for relational databases.

Data Fetching - Direct queries to a database.

SELECT first_name, last_name FROM employees
WHERE department_id = 101;

Directly queries a relational database for specific fields
from the 'employees' table based on a condition.

Performance Considerations - Efficient for database
operations.

SELECT

e.firstName,

e.lastName,

e.salary,

d.name

FROM employee e JOIN department d

ON e.department_id = d.id

WHERE e.department_id = 101

A SQL query fetching detailed information about
employees and their departments.

Over-fetching/Under-fetching

Single request for precise data retrieval reduces
network overhead. However, it only works for
relational databases, and a little more complex in logic
as compared to GraphQL.

REST API

Databases - Designed for variety of databases, including
relational and non-relational databases.

Data Fetching - Predefined endpoints for resources.

GET /api/employees?departmentld=101

Predefined endpoint for retrieving employee datain a
specific department.

Performance Considerations - Multiple requests, potential
over-fetching.

GET /api/employees
GET /api/departments

Requires multiple requests to fetch both employee and
department data.

Over-fetching/Under-fetching
The response may include more data than needed,
impacting bandwidth.

GraphQL

Databases - Designed for variety of databases, including relational
and non-relational databases (like REST API). But GraphQL's
flexibility can simplify integration with different data sources.

Data Fetching - Single flexible endpoint, custom data fetching.

query { employees(departmentid: 101)

{

firstName

lastName

1}

Single flexible endpoint allows clients to request only the required
data for employees in a specific department.

Performance Considerations - Single request, precise data retrieval.

query {

employees(departmentid: 101)

{

firstName

lastName

salary

department { name}

1}

A GraphQL query fetching detailed information about employees
and their departments.

Over-fetching/Under-fetching

. Single request for precise data retrieval reduces network
overhead.

. Allows clients to specify exactly the data they need,
preventing over-fetching.



LLM-powered GraphQL Generator for Data Retrieval
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powered GraphQL Generator for Data Retrieval." In International Joint Conference on Artificial Intelligence. 2024.



LLM-powered GraphQL Generator for Data Retrieval

IBM Research Natural Language to GraphQL

Setup Schema

Select a Test Scenario

() Query Databases

) Query REST APIs

© Query Databases and REST APIs together
) Custom sources

Scenario Name: Query Databases and REST APIs together

Schema
type People {
Birth_Date: String
Birth_Place: String
Height: Float
Name: String
People_ID: Int!
Weight: Float
body_builder: [Body_builder]
@materializer(query: "body_builderUsingBody_builder_People_ID_fkey")
}

Schema

type Query {
bb_stats: Body_builder_stats
@rest(endpoint: "http://host.docker.internal:6003/")

}

Add Custom Source

Design Prompts

Natural Language Query:

Choose a model: Few shot strategy

© Granite-20B-Code Base Model 5
) Granite-20B-Code Instruct Model

Generate Prompt

Instruction: Few shots Prompt: Test Query:
Your task is to write an API Training Example 0: Test Example:
request for a custom
database schema based on CUSTOM SCHEMA: CUSTOM SCHEMA:
the API reference provided. e e
For guidance on how to type Query { type Body_builder {
correctly format this API e Body_Builder_ID: Int!
request, consult the API return list of persons Clean_Jerk: Float
rafaranca hara: Nata: Plaaca 4 e A Snatch: Flaat A

Generate GraphQL

Natural Language Query:

Generated GraphQL:

graphgl{
operationName =""
query =
query {
body_builder(Body_Builder_ID: 1) {
Body_Builder_ID P

Execute GraphQL
P ...}
Generate NL Summary

NL Summary: The name of the body builder is Jack Campbell. The height of the body builder is 182 cm.
The weight of the body builder is 80 kg. The total time of the body builder is 317.5 seconds. The clean jerk
of the body builder is 175.0 seconds. The snatch of the body builder is 142.5 seconds. The birth date of the
body builder is January 1, 1992. The birth place of the body builder is Port Huron, Michigan.



APl Sequencing for GraphQL Schema Generation

type Query { weather(ip: String! openweather_appid: Secret! lang: String! = "en"):
Openweather_WeatherForecast
location(ip: String!, lang: String! = "en"): IpApi_Location @sequence(
@rest( steps: [
endpoint: "http://ip- { query: "location"}
api.com/json/Sip?fields=64745471&lang=S$lang" { query: "weatherReport", arguments: [{name: "openweather_appid", argument:
setters: [{ field: "ip", path: "query" }] "openweather_appid"}] }
) ]
weatherReport(openweather_appid: Secret! )
lang: String! ="en"
lat: Float!
lon: Float!): Openweather_WeatherForecast t l
@rest(
endpoint:
"https ://ap|.open'weathermap.org/data/2.5/onecal|?app|d=$o query MyQuery {
penweather_appid&lang=Slang&lat=Slat&lon=5Slon&exclude= weather( {
minutely%2Chourly” ip: "72.188.196.163" "data": {
. ) setltlers: { f:leld: "clouds",'|loath: "current.clouds" },{ openweather_appid: "weather": {
field: "temp", path: "current.temp" } | "b4548ecd 77851807666 19e797744de85" "clouds": 40,
) ) { "temp": 303.5
) clouds }
# many other type queries temp }
| \ } }

The task is to identify and order location and weatherReport type queries to use with the @sequence directive



APl Sequencing and Schema Modification

Dataset: tmdb
Utterancel: tell me where the

company universal pictures was
founded?

Dataset: spotify
Utterance2: Recommend

more artists based on my firs
following artist

—

API Search (LLM prompt + RAG)

Utterancel: ['/search/company’,
'/company/{company_id}’]

Utterance2: ['/me/following’,
'[artists/{id}/related-artists']

Query with
Y G—

GraphiQL interface

Schema

deployment

Vanilla StepZen
generated schema
from stepzen
import curl

Modified schema
< with @sequence

directive

LLM Prompt for
Schema Modification




“z “Make me a playlist containing three songs of
- Mariah Carey and name it 'Love Mariah’

A

—— @0 RESTAPI

e

A 4

OpenAPI Specs ]

1 </> !

Function GraphQL
Signatures Engine
—@o———[ GraphQL Schema

~N

response_obj = GET_search(q="Mariah Carey", type="track")

response_objl = GET_me()

response_obj2 = POST_users__user_id__playlists(
user_id=response_objl.id, name="Love Mariah")

POST_playlists__playlist_id__tracks(playlist_id=response_obj2.id,

nom

uris="," join([item.uri for item in response_obj.tracks.items[:3]]))

Sequential APl/Function Calling Using GraphQL Schema

Spotify Example
Add the first song of The Dark Side of the Moon in my playback queue
response_obj = GET_ search(g="The Dark Side of the Moon", type="album")

response_ objl = GET albums__id tracks (id=response obj.tracks.items[0].id)
POST me player dqueue (uri=response objl.items[0].uri)

TMDB Example
give me the number of movies directed by Sofia Coppola

response_obj = GET_ search person(query="Sofia Coppola")
GET person person id movie credits (person id=response obj.results[0].id)

Model Prompt Test ArgMatch ArgMatch Seq Match Seq Match
Style split (full) (functions) (full) (conn. subseq.)
codellama-34b-instruct CoT  overall 0.6875 0.8051 0.9062 0.9375
deepseek-coder-33b-instruct CoT  overall 0.7500 0.8701 0.9687 1.0000
granite-34b-code-instruct CoT  overall 0.7812 0.8701 0.9375 0.9687
codellama-34b-instruct ReAct  overall 0.7188 0.8182 0.9062 0.8750
deepseek-coder-33b-instruct ReAct  overall 0.7500 0.8312 0.9375 0.8438
granite-34b-code-instruct ReAct  overall 0.7812 0.8571 0.8750 0.8750
codellama-34b-instruct CaoT spotify 0.5833 0.7741 0.9166 0.9166
deepseek-coder-33b-instruct CoT spotify 0.5833 0.7741 1.0000 1.0000
granite-3db-code-instruct CoT spotify 0.5000 0.7096 0.9166 0.9166
codellama-34b-instruct ReAct  spotify 0.4167 0.7097 0.8333 0.7500
deepseek-coder-33b-instruct ReAct  spotify 0.5000 0.7419 1.0000 0.7500
granite-34b-code-instruct ReAct  spotify 0.5000 0.6774 0.8333 0.8333
codellama-34b-instruct CoT tmdb 0.7500 0.8260 0.9000 0.9500
deepseek-coder-33b-instruct  CoT tmdb 0.8500 0.9347 0.9500 1.0000
granite-34b-code-instruct CoT tmdb 1.0000 1.0000 1.0000 1.0000
codellama-34b-instruct ReAct  tmdb 0.9000 0.8913 0.9500 0.9500
deepseck-coder-33b-instruct ReAct  undb 0.9000 0.8913 0.9000 0.9000
granite-34b-code-instruct ReAct  tmdb 0.9500 0.9783 0.9000 0.9000

Table 2: Few-shot Chain-of-Thought (CoT) and ReAct prompting results on the test split of GraphQLRestBench.



Agents for Schema Generation

User

utterance

Generate a
weather report for
the IP address
72.188.196.163

weather(ip: String! openweather_appid: Secret! lang: String!

@sequence((
steps: |

{ query: "location"}
{ query: "weatherReport", arguments: [{name:

]

query MyQuery {
weather (
ip: "72.188.196.163"
openweather_appid:
) A
clouds
temp
)3

A\ 4

"b4548ecd778518b766619e797744de85"

API search

Basic schema

http://ip-api.com/json/
https://api.openweathermap

.org/data/

type Query {

location(ip: String!,
@rest(

lang: String! = "en"): IpApi_Location

"ope

generation and

endpoint: "http://ip-api.com/json/$ip?fields=64745
» setters: [{ field: "ip", path: "query" }]
generation )
weatherReport(openweather_appid: Secret!
lang: String! = "en"
lat: Float!
lon: Float!): Openweather_WeatherForecast
@rest(
endpoint: "https://api.openweathermap.org/data/2.5
setters: [{ field: "clouds", path: "current.clouds
)
¥
A

deployment

(Code
Executor)

b
t_m,;l, E AutoGen

Automatic Debugging

A

(Simple)
Query
generation
and testing

fe

User
edback



http://ip-api.com/json
https://api.openweathermap.org/data/2.5/onecall?appid=$openweather_appid&lang=$lang&lat=$lat&lon=$lon&exclude=minutely%2Chourly
https://api.openweathermap.org/data/2.5/onecall?appid=$openweather_appid&lang=$lang&lat=$lat&lon=$lon&exclude=minutely%2Chourly

APl Sequencing with Reinforcement Learning
Lakshmi Mandal (1ISc), Balaji Ganesan, Avirup Saha, Renuka Sindhgatta

NLU: "Unfollow the artist of the song now playing and skip to the next song" RL Agent
Retrieve (NLU) —  Obs1, Feasible actions Ef,
. =)
AL " &
Retrieve APIs
from VectorDB RAG Agent : .
o) eeierE Retrieve (NLU, Obs1, A1) __, Obs 2, Feasible actions
Graph > E]!'
)
A2 R
Retrieve
Feedback from Code Agent _ | |
other agents Retrieve (NLU, Obs1,0bs2, A2) . Obs 3, Feasible actions
o
Ask Oracle to t anx
Ty Oracle op
determine if the » Return Sequence of APls

task is complete




GraphQL for RAG in Legal Petition Drafting

GrathL.

BACKEND
E api responsces Response
. A ¢
- ¢ Query -}
api calls +
6 natural lang i’'p FRONTEND
Language Model Context - ficld identifier ~NE
External Datastore 1
ENDPOINTS? ' Query Data _
agenl actions LangChaln < User Query . )
2 | Graph AGENT LOGIC? System Response > FIELDS?
Query pata
l | s agg. data + 8
—
natural lang o/p or
Schema clarification ques
sslquery | gy GraphQLTool < » ficld identifier
3 SCHEMA?
;Query_[ T
Data RESOLVERS?
Local Datastore | 48 | rccords End User

POPULATION

Sudipto Ghosh, Devanshu Verma, Balaji Ganesan, Purnima Bindal, Vikas Kumar, Vasudha Bhatnagar. InLegalLLaMA: Indian Legal Knowledge
Enhanced Large Language Models. OpenkKG Workshop at IJCAI 2024.



Schema Generation for BFF (Backend for Frontend) in Lakehouse

ThinkCompany Lakehouse

; ! ’ )
| school_bus | | basebails | | candidate_poll | | program_share | customer_complaints | | cre_Theme_park | | restaurants

e_learning | | phone_1 | | tracking_software_prablems | mountain_photos | | cre_Doc_Tracking_DB | | book_2 . o C G
think : Code Gen

course_teach | | loan_1 | | coftee_shop | sports_competition | | station_weather | | county_public_safety

gas_company | | fight 4 ‘ employee_hire_evaluation pets 1 | | tracking_share_transactions ith G hoL
s | (e e = Schema generation from APls Query with GraphQ

think : Data Application

| architecture ‘ apartment_rentals ‘ product_catalog 1 singer ‘ document_management ‘ small_bank_1
| cinema | | customers_and_addresses | | movie | [ voter_2 scholar [ farm | Hi Coda, enter your instruction here: T ————
geo | | e_government | [ products_for_hire machine_repair | | wine_1 | [ insurance_fnol | [ imab | [ sakia.1
— - ——— — I want to create a dashboard for handling customer complaints | want to see card transactions with account details.
| party_people ! company_office | | behavior_monitoring | | roller_coaster | | swimming | | activity.1 |

| poker_player ‘ [ student_1 | [ election_representative | | device
journal_committee clection | | medicine_enzyme.interaction | | ship_mission | | musical | | soivency.i | [ inn_1 |

college_1 protein_institute ‘ wta_1 \ network_2 riding_club ‘ he ‘ Submit
— ) — Find Related APIs
soccer.1 | | manufactory1 | | hospital ‘ entrepreneur | | orchestra | [ tracking.grants_for_research ‘ company.1 | . ) )
e et Natural Language Query: | want to see card transactions with account details.
a2 ] [voron | i | st ] [ s

— 2L : ) . - ch del:
[ chinook 1 | [ music.1 | [ store.1 | [ pertormance.attendance | world 1 st | [ pikotrecord http://localhost:5000/customer_complaints/Customers 00se a model
Rl s sdciabiia? © ibm/granite-20b-code-instruct-v2

company

perpetrator concert_singer scientist_1 store_product body_builder news_report academic
i [~ ibm/granite-20b-code-instruct-vl
| shop_membership \ game_injury | | aircraft | | cart | | assots_maintenance | | browser web http://localhost:5000/customer_complaints/Staff ibm/granite-13b-chat-v2
[ city_record ‘ cre_Doc_Control_Systems gymnast customers_campaigns_ecommerce ibm/granite-13b-instruct-v2
insurance_and_eClaims | | yelp game 1 | Lvallwﬂy student_assessment | | college_3 \ university_basketball :
= — —_— - http://localhost:5000/ er i roducts Query ‘
| tocal_govt_mdm ‘ student_transcripts_tracking | | music_4 | | insurance_poicies | | coliege_2 —
workshop_paper | | theme_gallery decoration_competition | | dorm_1 ‘ train_station ‘ museum_visit Generated GraphQL:
http://localhost:5000/customer_complaints/Complaints previous_transaction_id
Lakehouse APIs @ < ) )
PR —————— customers_card_transactions_Accounts {
- account_id
= . http://localhost:5000/tracking_orders/Customers @ accounting
defaul -
-
BT cvstomers_cord_tronmacts ey v e
ISR /curtomara_cora = e http://localhost:5000/customer_deliveries/Customers q
IR /eustoners_cord_ s -y ~ ¥ vdata" : {
BE5AN /eustoners_card_t 4 e ~ ¥ "customers_card_transactions_Financial_Transactions" : [
Submit Selections vo:q
‘_ feustomers_card_t _card ~ B
[ o 0 = . - "account_id" : 15
customers_card_ Cust -y
Selected API URLs "card_id" : 1
5N /customers_card_tr e _card ~ { -
"transaction_amount" : 1761.23
[l /customers_cord_ i e "url": "http://localhost:5000/customers_card_transactions/Accounts", B .
transaction_date" : "2018-03-24 06:41:41"
SN /eustomers_card.t i i s v "description": "Database: customers_card_transactions, Table: Accounts, Columns: account_id, account_name, X
. . . " "transaction_type" : "Payment"
BEGHR /evstomers_card_s ot ~ ‘database_name": "customers_card_transactions", )
"table name": "Accounts” "transaction_comment" : muLL
- s = o e " columm o ’ “other_transaction_details" : e
Sl /estomars_cars cards = - column_names": [ orevd e
S - "account id" previous_transaction_id" : 925
500 /customers_card :_Cards/<id> eard_rnsacticns iable ~ -7 . 3}
"account name".
AN /customers_card ions/Custoners_Cards/<id> cand ~ Yi:{
BT 7customers_card_tr _Cards/<id> e ~ "account_id" : 3

Spider REST API as proxy for Lakehouse Data Steward Persona to SchemaGen Data Analyst Persona for QueryGen



GraphQL Schema Generation — Potential Directions
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Querying Lakehouse

A brief discussion of reasoning in benchmarks



BIRD

External Knowledge Reasoning Reasoning Domain Name the ID and age of patient with two or more 23.6%
Type Knowledge laboratory examinations which show their hematoclit level
. exceeded the normal range.
@ List account id who choosesiweekly issue issuance;statement? SELECT T1.ID, STRFTIME('%Y', CURRENT TIMESTAMF)
L I i - STRFTIME('%Y', T1.Birthday) FROM Patient AS
External Knowledge: Tl INNER JOIN Laborateory AS T2 ON T1.ID =
T TR R T T2.ID WHERE T1.ID IN {( SELECT ID FROM
for weekly issuance. J Laborato:y WHERE HCT > 52 GROUP BY ID HAVING
COUNT (ID) »>= 2 )
SELECT account_id FROM account WHERE account.frequenc . .
- g i MNumeric Among the posts with a score of over 20, what is the 24.5%
= ‘POPLATEK TYDNE'; Computation percentage of them being owned by an elder user?
SELECT CAST(SUM(IIF(T2.Age > 65, 1, 0)) AS REAL)
_______________ * 100 / count(Tl.Id) FROM posts AS Tl INNER
=3 e E . JOIN users AS T2 ON Tl.OwnerUserId = T2.Id
? How many accounts areieligible for Ioansim New York City? WHERE T1.Score > 20
External Knowledge:
The condition of loame 1o that Synonym How many clients opened their accounts in Jesenik branch 7.2 %
the type of the account should were women ? (fEI’ﬂﬂlB}
be “OWNER”".
SELECT COUNT (Tl.client_id) FROM client AS Tl
.' INNER JOIN district AS T2 ON Tl.district_id
SELECT COUNT(*) FROM account WHERE account.type b\ - = T2.district id WHERE Tl.gender = 'F' AND
o L - L
= ‘OWNER’ AND city = ‘NY’; - TZ.AZ = "Jesenik
Value Among the weekly issuance accounts, how many have a 70.1 %
[lustration loan of under 2000007
Models must handle that only "OWNER"
SELECT COUNT (Tl.account_id) FROM loan AS Tl
accounts are eligible for |Oans INNER JOIN account AS TZ ON Tl.ac:count_:i.d =
’ T2.account id WHERE T2.frequency = 'POPLATEK
TYDNE' AND T1l.amount < 200000

Li, Jinyang, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang et al. "Can |lIm already serve as a database interface? a
big bench for large-scale database grounded text-to-sqls." Advances in Neural Information Processing Systems 36 (2024).



BIRD

* We hypothesize that the internal multi-step knowledge reasoning of LLMs is not
compatible with the way of external knowledge (evidence) in this situation.
Therefore, the development of methods that effectively combine the strong multi-
step self-reasoning capabilities of LLMs with external knowledge reasoning
coherently presents a promising future direction [See Mialon et al].

Table 1: An overview comparison between BIRD and other cross-domain text-to-SQL benchmarks.
In SQL, Function pertains to the SQL functions (Appendix B.11). Knowledge refers to whether
or not this dataset necessitates external knowledge reasoning from the model. Ef ficiency refers
to whether or not this dataset takes into consideration execution efficiency.

Dataset | #Example #DB #Table/DB # Row/DB Function Knowledge Efficiency
WikiSQL [58] 80,654 26,521 1 17 X X X
SPIDER [53] 10,181 200 5.1 2K X X X
KaggleDBQA [24] 272 8 2.3 280K X v X
BIRD | 12,751 95 7.3 549K v v v

Li, Jinyang, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang et al. "Can lIm already serve as a database interface? a
big bench for large-scale database grounded text-to-sqls." Advances in Neural Information Processing Systems 36 (2024).



Archer

Arithmetic Reasoning

How much higher is the maximum power of a BMW car than
the maximum power of a Fiat car?

FONENESHEL RSN ENRSNESS !

SELECT MAX (horsepowsar) = (SELECT MAX (horsepower)
FROM cars_data A JOIN car names B ON A.id=-B.makeld
WHERE B.model="fiat"] AE diff FROM cara data A JOIN
car_names B ON A.ld=-B.makeld WHERE B.model="baw®

Commuonsense Reasoning

Scale Complexity Reasoning Distribution
Dataset #Q #SQL #DB #Dom T/DB CDB| QL SQLL V§ TM NL GB OB | A® A() A(™ AH H c  csm |lomE
ATIS 5280 947 1 1 25 131 | 1053 9975 3.14 466 039 001 000| X X X X X X X en
GeoQuery | 877 246 1 1 8 31 748 2676 082 146 1.04 0.18 007| X X X o022 X x X en
Scholar 817 193 1 1 12 28 659 3803 136 326 002 037 028| X 05% X X X x x en
Academic 196 185 1 1 15 42 1333 3685 130 323 004 021 0.12]| X X x x X X X en
IMDB 131 89 1 1 16 65 1023 2951 120 284 001 007 0.11| X X x x X x X en
Yelp 128 120 1 1 7 38 987 2833 168 225 000 0.10 0.08| X X x x X x X en
Advising | 4387 205 1 1 18 124 | 1090 4808 3.06 3.13 017 003 007 | 34% X X x X X X en
Restaurant | 378 23 1 1 3 12 1013 2957 226 226 0.7 0.00 0.00]| X X X x X x X en
WikiSQL | 80654 51159 26531 - 1 633 | 1246 1332 053 1.00 000 000 000 X X x x X x X en
DuSQL | 25003 20308 208 - 404 2138 | 1920 2063 116 133 020 042 030 24% 95% 10% 4.4% X - x zh
BIRD 10962 10841 80 - 768 5471 | 1581 2385 116 220 008 0.10 019 0.8% 50% 79% 100% X - X en
Cspider 9693 5275 166 99 528 27.13 | 1190 2437 093 169 010 023 021 01% 01% X  00% X x X zh
Spider 9693 5275 166 99 528 27.13 | 1329 2437 093 169 010 023 021 01% 01% X  00% X x x en
KaggleDBQA | 272 249 8 8 213 2238 | 983 1380 054 LI8 000 0.44 050 | 00% 00% X  00% X X X en
Archer %4 | youn s21 20 20 755 4525 | B0 g01 621 217 108 059 026 | 340% 478% 62.0% 407% 440% S514% 22.1% |
(Ours) zh-25.99 zh

Table 1: Comparison of public text-to-SQL datasets. The abbreviations used are as follows: #Q for the number of
unique questions, #SQL for the number of unique SQLs, #DB for the number of databases, #Dom for the number of
domains, T/DB for the number of tables per database, C/DB for the number of columns per database, QL for the
average question length, SQLL for the average SQL length, VS for the average number of value slots per question,
TM for the average number of tables mentioned in each SQL, NL for the average nested level per SQL, GB and
OB for the average number of GROUP BY and ORDER BY clauses per SQL respectively. A, H, C, and Lang represent
arithmetic, hypothetical, commonsense, and language, respectively. The cross mark, - denote absence and presence
respectively. The statistics for BIRD, CSpider, and Spider is based on training and dev sets as their test sets are
unavailable. Language is represented as en for English databases and questions, zh for Chinese databases and

questions, and zh for English databases and Chinese questions.

Which 4-cylinder car needs the most fuel to drive 300 miles?
List how many gallons it needs, and its make and model.
FIOREBEERSHNEEHREARESIIEMFA €
WE LNt i’

Commonsense Knowledge: Fuel used is calculated by divding
distance driven by fuel consumption.

ZELECT E. Make, B.Madel, 1.0 * 300 / mpg AS n gallen
FROM cars data A JOIN car_names B ON A.Id=B.MakeId
WHERE cylinders="4" ORODER BY mpg ASC LIMIT 1

Hypothetical Reasoning

If all cars produced by the Daimler Benz company have 4-
cylinders, then in all 4-cylinder cars, which one needs the most
fuel to drive 300 miles? Please list how many gallons it needs,
along with its make and model.

s EWASIMAFHIMNE, FI0REREHRFH
ML e sS4 RRT4A, ERESNEE®?

SELECT B.Make, B.Model, 1.0 * 300 / mpg AS n_gallen
FEOM :-:'l.fS_E.‘_'I'_-:'l A JOIN CAr names B ON A.id=-B.makeid
JOIN model list © ON B.model-C.model JOIN car makers
D on C.maker=D.14d WHEERE D.fullnames"Daimliar Banz' or
A.cylinderam"4" DEDER BY mpg ASC LIMIT 1

Zheng, Danna, Mirella Lapata, and Jeff Z. Pan. "Archer: A Human-Labeled Text-to-SQL Dataset with Arithmetic, Commonsense and
Hypothetical Reasoning." arXiv preprint arXiv:2402.12554 (2024).



Beaver

Organization Room Buildings_Address Buildings
| | R e rrp ety
/- ' ™ : i I @:urul::we STREET |STREET NUMBER| STREET | STREET ADDHESQ (BUILL Q)
ORGAMZATION| DEPARTMENT ORGANIZATION| BUILDING| ROOM BUILDING| BUILDING
KEY NAME KEY KEY KEYy |AREA KEY |NUMBER SUFFIX NAME | SUFFIX |PURPOSE KEY NAME
o 001 B1 R1_[1036 B L A Howio | Or | Stest B1 Tata
001 B1 R2 854 B1 3z (Mull) Hope Dr Pl
002 Materials ooz B1 R3 98.7 B2 70 (Ml Freedom | Street Streat B2 Sata
Science and Eng J  \_ 002 B2 R1 16.5 / \_ B2 54 R Barik Ave Package / \_ v,

Figure 2: Four tables in an enterprise data warehouse with their table names, schema, and example

instances shown. Green lines connecting column ORGANIZATION_KEY in different tables and column
BUILDING_KEY refer to join relationships among the four tables.

Facility
management staff Natural language guestion
waum{ “What are the building names, department names, building street addresses,
‘ | want to assess the office space occupancy of é total number of rooms, and total area of all rooms for the
e engineering departments to develop potential office and the material science and engineering
' relocation plans! department?”

Figure 3: An example question posed by a facility management staff on the tables shown in Figure 2|

Correct mappings between information/ constraints mentioned in the user question and table columns/
instances are illustrated with the same color.

Chen, Peter Baile, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael Cafarella, Cagatay Demiralp, and Michael
Stonebraker. "BEAVER: An Enterprise Benchmark for Text-to-SQL." arXiv preprint arXiv:2409.02038 (2024).



Beaver

GPT-4o predicted SQL

SELECT

flb.BUILDING_NAME, fo.DEPARTMENT_NAME,

fba.5TREET_NUMEBER || fba.STREET_NAME,

COUNT(distinct fr.ROOM KEY) AS total_rooms, SUM{fr.AREA) as
total_area
FROM

Organization fo JOIN Room fr ON fo.ORGANIZATION_KEY =
fr . ORGANIZATION_KEY

JOIN Buildings_Address fba on fb.BUILDING_KEY =
fba.BUILDING_KEY

JOIN Buildings fb ON fb.BUILDING_KEY = fr.BUILDING_KEY
WHERE

fo.DEPARTMENT _MAME in ('Materials Science and Engineering’,

)

GROUP BY

fb.BUILDING_MNAME, fo.DEPARTMENT_NAME,

fba.STREET_NUMBER || fba.STREET_NAME;

Gold SQL

SELECT

fb.BUILDING_NAME, fo.DEPARTMENT_NAME,

fba.STREET_MWUMBER || fba.STREET_NUMBER_SUFFIX || fba.STREET_NAME ||
fba.STREET_SUFFIX,

COUNT(distinct fr.ROOM_KEY) AS total_rooms, SUM({fr.AREA) as total_area
FROM

Organization fo JOIN Room fr ON fo.ORGANIZATION_ KEY =
fr . ORGANIZATION_KEY

JOIN Buildings_Address fba on fb.BUILDING_KEY = fba.BUILDING_KEY

JOIN Buildings fb ON fb.BUILDING_KEY = fr . BUILDING_KEY
WHERE

fba.ADDRESS_PURPDSE = ‘STREET" and

fo.DEPARTMENT_MNAME 1in ('Materials Science and Eng’,

)
GROUP BY
fb.BUILDING_NAME, fo.DEPARTMENT NAME,
fba.STREET_NUMBER || fba.STREET_NUMBER_SUFFIX || fba.STREET_NAME ||
fba.STREET_SUFFIX;

Figure 4: GPT-40 predicted SQL and the gold SQL corresponding to the user question in Figure
Color-coded parts in SQL statements are mappings to the information/ constraints in the user question.
Gold SQL includes correct mappings, but the predicted SQL might include incorrect mappings.

Chen, Peter Baile, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael Cafarella, Cagatay Demiralp, and Michael
Stonebraker. "BEAVER: An Enterprise Benchmark for Text-to-SQL." arXiv preprint arXiv:2409.02038 (2024).



Infusing Knowledge into Large Language Models with Contextual Prompts

Kinshuk Vashist, Balaji Ganesan, Vikas Kumar, Vasudha Bhatnagar

. . Dataset Model Hits@11 Hits@51 Hits@101 AED] MRR*?

<M1> Robbie Shields Terry '}q ﬁ KELM-TEKGEN _ google/flan-t5-small 0.019 0.036 0.045 1875  0.024

i Error google/flan-t5-base 0.047 0.063 0.095 85.5 0.055

' | Ppropagation Tt Rbubrdata  KnowhdgeGraph  Uneage google/flan-t5-large 0.082 0.102 0.138 1095  0.088

flan-t5-small-fine-tuned 0.528 0.535 0.541 96.75 0.538

LLM “Robbie Shields Terry was Michelle flan-t5-base-fine-tuned 0.514 0.520 0539 8325 0.525

i , Obama's great-aunt: her mother's flan-t5-small-fine-tuned-w-context 0.800 0.801 0.804 2.75 0.805

; / father's sister.” flan-t5-base-fine-tuned-w-context 0.825 0.825 0.833 0.75 0.827

I P/ TACRED google/flan-t5-small 0.004 0.006 0.006 84.75 0.005

N EEEEEEE ¥ google/flan-t5-base 0.004 0.014 0.018 9.75 0.008

7 7 7 2 ’ 2 7 7 7 2 google/flan-t5-large 0.034 0.044 0.060 2250  0.039

199992909 ¢ flan-t5-small-fine-tuned 0.366 0.368 039 5025  0.376

° ’ - e flan-t5-small-fine-tuned-w-context 0.782 0.782 0.784 375  0.788

flan-t5-base-fine-tuned-w-context 0.818 0.820 0.824 525 0.823

Re-TACRED google/flan-t5-small 0.000 0.010 0.016  66.00 0.005

I google/flan-t5-base 0.006 0.016 0.028  28.50 0.010

google/flan-t5-large 0.052 0.070 0.084 525 0.060

Michelle Obama’s great aunt was <M1> flan-t5-small-fine-tuned 0352 0.366 0406 1575 0370

flan-t5-small-fine-tuned-w-context 0.798 0.798 0.800 6.00 0.805

Flgure 1: Contextual pI'OI'IlptS to infuse knowle dge about flan-t5-base-fine-tuned-w-context 0.846 0.846 0.850 0.00 0.852
entities into Large Lan guage Models Table 1: flan-T5 performance on relation prediction task on KELM-TEKGEN, TACRED and Re-TACRED datasets.

Kinshuk Vasisht, Balaji Ganesan, Vikas Kumar, and Vasudha Bhatnagar. 2023. Infusing Knowledge into Large Language Models
with Contextual Prompts. In Proceedings of the 20th International Conference on Natural Language Processing (ICON)



Sherpas Framework

Prompt Sequencer Explainer Orchestrator
0, — o, Tools / API
3] =) =) 00lIs S
FM Updater pepet
cso ! Task
a8 v £ X
FM Input | | FM | [Generated|||,| Processed || ==
(Prompt) [ | API call Output | Output l
S8 2 4 ~

F ]
Prompt Assistant Assessor Knowledge Curator  gnowledge

D @ @ RepoTsitory

) S =
e i, e External
Knowledge

Figure 1: The Sherpas framework for guiding Foundation Models, showing various agent
categories and their interaction with the FM as it executes or assists completion of a set of tasks.

Bhattacharjya, Debarun, Junkyu Lee, Don Joven Ravoy Agravante, Balaji Ganesan, and Radu Marinescu. "A Framework for Agents Guiding Foundation
Models through Knowledge and Reasoning." In Trustworthy Al Workshop at International Joint Conference on Artificial Intelligence. 2024.
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